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Critical behaviour of the discrete spin cubic model? 

Amnon Aharony 
Department of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, Israel 

Received 13 August 1976 

Abstract. An n-component spin model, with the nearest-neighbour Hamiltonian 

where S, is a discrete unit vector pointing only along one of the 2n cubic axes directions, is 
studied exactly at dimensions d = 1 and d = 1 + e  and approximately (using dedecoration 
renormalization group recursion relations) at d = 2. The model exhibits four competing 
possible types of critical behaviour, related to the king model, to the n-state and 2n-state 
Potts models and to a ‘new cubic’ fixed point. For large n, at d = 2, the last three types of 
behaviour show peculiarities which may be related to the transition becoming a first-order 
one. 

1. Introduction 

Cubic symmetry plays an important role in determining the nature of the displacive 
phase transitions of perovskites (Bruce and Aharony 1975, Aharony and Bruce 1974). 
Similarly, such symmetry may be relevant for some ferromagnets (Aharony and Bruce 
1975). Therefore, cubic systems have recently been thoroughly investigated using the 
renormalization group technique at d = 4 - E dimensions (Aharony 1973, Bruce 1974, 
Natterman and Trimper 1975, Ketley and Wallace 1973) and at a large number of 
components of the order parameter (Wallace 1973). 

In these studies, one usually considers a continuous n -component spin model, with 
the effective Hamiltonian 

- p a = /  dd~(f[r~S(~)~2+(VS)Z]+~/S~4+~ ,= l  2 . . ), (1) 

where S is a continuous n-component ‘spin’ order parameter. The parameter U 
measures the strength of the cubic anisotropy. In mean field theory, the order 
parameter S will be along a cubic diagonal if U > 0 and along a cubic axis if U < 0. These 
directions will be maintained when fluctuations are present, as long as T, is not reached 
(Bruce and Aharony 1975). 

Renormalization group studies at d = 4 - E  (Aharony 1973) yield four fixed points 
with U and U of order E .  These are Gaussian, with U* = U* = 0, isotropic ‘Heisenberg’, 
with U* = 0, Ising, with U* = 0 ( n  decoupled Ising models), and ‘cubic’, with both U* 
and U* non-zero. This ‘cubic’ fixed point is the most stable (with U* > 0) for n > n,(d) 
and becomes unstable (with U* < 0) for n < n,(d). The value of n,(d) approaches 2 as 

i Supported by a grant from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. 

389 



3 90 A Aharony 

d + 2+ (Pelcovits and Nelson 1976, BrCzin et al 1976) and 4 as d -* 4- (Aharony 1973, 
Ketley and Wallace 1973). Combining the expansions above d = 2 and below d = 4 one 
finds that n,(3) is probably larger than 3 and smaller than 4. For d s 2 ,  there is no 
ferromagnetic long-range order at finite temperature for the isotropic case iz 5 2 
(Mermin and Wagner 1966, Hohenberg 1967). This theorem does not apply to the 
cubic case. One may thus expect some kind of long-range order for the cubic problem 
even at dimensions 1 C d s 2. 

To decide which of all the possible fixed points describes the critical behaviour of a 
given system, one must iterate the renormalization group recursion relations, starting 
with the Hamiltonian of that system, and follow the resulting changes in the effective 
Hamiltonian (or ‘flow diagrams’, in Hamiltonian space), until a fixed point is reached 
(Wilson and Kogut 1974). The flow diagrams of the Hamiltonian (1) in the U--U plane 
under renormalization group recursion relations near d = 4 are described in detail 
elsewhere (Aharony 1976). Generally, if U > O  then the Hamiltonian ‘flows’ to the 
stable cubic (n >n,) or Heisenberg (n < n,) fixed point (we assume that U >O). 
However, the situation for U < 0 is more complicated. If n > no U flows towards -CO, 

thus leaving the range of applicability of the perturbation expansion. If n < n, then the 
Hamiltonian flows to the Heisenberg fixed point for small [u l ,  and towards -CO for 
values of JuJ which exceed some ‘tricritical’ value (Aharony 19747’). These flows 
towards -CO, termed ‘runaways’, are usually interpreted as corresponding to the 
transition becoming a first-order one. This is based on the fact that the flow eventually 
reaches a region in which the quartic terms in (1) are not positive definite and in which 
mean field theory can be used. Similar conclusions were found by Wallace (1973), for 
small U < 0 and large n, for dimensionalities 2 < d C 4, and by Rudnick (unpublished). 

Since all these studies were limited to small values of -U (of order E ) ,  due to their 
diagrammatic nature, it is highly desirable to consider the case of large negative -U using 
some independent technique. A model which corresponds to this limit was recently 
introduced by Levy and co-workers (Kim et a1 1975, Kim and Levy 1975, Kim et a1 
1976). The model, which they called ‘the n-component cubic model’, is based on the 
Hamiltonian 

2 = - J C T ~ U ~ & , ~ , ,  (2) 
(ii) 

where gi takes the values *l and ai the values 1 ,2 ,  . . . , n. This Hamiltonian is the 
same as 

2= -J C (S i .  Si) ,  (3) 
(ii) 

where Si can assume the 2n values (*l, 0, . . . , 0), (0, * l ,  0, . . . ), . . . , (0, . . . , 0, *l). 
Clearly (3) is equivalent to the U -f -CO limit of 

2 = - J C  ( S i . g ) + u c  f (SiJ4, (4) 
( i j )  i a=l 

where Si is a classical spin vector (on the unit sphere), or to the limit U +- -CO, U + CO of 
(1) (Wilson and Kogut 1974). Levy and co-workers show that it is also applicable to the 
description of phase transitions in cubic rare earths which have sixfold-degenerate 
ground states. Kim and Levy (1975) used high-temperature series expansions of the 

t Paper presented at the Conference on Ch’tical Phenomena in Multicomponent Systems, Athens, Georgia, 
1974, unpublished. 
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model (2) for FCC lattices to conclude that it has a first-order transition for n > n*, with 
n* = 2.35 * 0.2, and a continuous transition for n < n *. Note that for n = 2, equation 
(2) is equivalent to two decoupled Ising models and thus has a second-order transition. 

In this paper we study various aspects of the critical behaviour of an extension of the 
cubic Hamiltonian, equation (2), at low dimensionalities. The model is described in 
detail, including various exact limits, in 0 2. In particular, the extended model reduces 
to versions of the Potts (1952) model in several limits. Then 0 3 is devoted to an exact 
solution of the model at d = 1. Although it has no long-range order at finite tempera- 
tures, it approaches criticality as T+O and one can get some feeling of its critical 
properties in this limit. In §4 we extend these results to d = 1 + E  dimensions, following 
the technique of Mgdal(1975), and in § 5 we discuss the model at d = 2, using a simple 
approximate dedecoration renormalization group (Barber 1975). Finally, the results 
are discussed and summarized in § 6. 

2. Themodel 

In a similar way to equation (3), one can also consider a quadrupolar interaction (Kim et 
a1 1975) 

Xq = -K C (S, . S,)’. 

Rq = -K c Sa,,, 

( 5 )  
(ii) 

In the notation of equation (2), (S, . S,) = giuiSa8,,, and therefore 

(6) 
(ii) 

The model we shall consider is the sum of equations (2) and (6), i.e. 

A direct motivation for studying (7) arises from the fact that Rq is generated under the 
renormalization group transformation even if we start only with the Hamiltonian (2). 
However, the Hamiltonian (7) is physically relevant to cubic systems with both dipolar 
and quadrupolar (short-range) coupling, and has many additional interesting limiting 
cases. Clearly, it goes to equation (1) in the continuous spin limit. In the remainder of 
this section we shall review some of its limiting cases. 

First, note that (6) is just the Hamiltonian of the n-state Potts model (Potts 1952). It 
reduces to the Ising model for n = 2, and is directly related to the percolation problem if 
analytically continued to n + 1 (Kasteleyn and Fortuin 1969, Fortuin and Kasteleyn 
1972, Harris et a1 1975). The limit n +O also corresponds to a percolation problem 
(Stephen 1976). Harris er a1 (1975) studied the model using the Niemeijer and van 
Leeuwen (1974) renormalization group at d = 2 for n + 1, and Stephen (1976) studied it 
using the Migdal(l975) renormalization group at d = 1 + E .  Both authors studied it also 
at d = 6-E, as was also done by Priest and Lubensky (1976). Low- and high- 
temperature series also exist, both at d = 2 and at d = 3, for various values of n (for 
recent references, see Enting and Domb 1975, Kim and Joseph 1975). These seem to 
yield a second-order transition for small values of n, and a first-order transition for large 
values of n. Baxter (1973) recently proved, that at d = 2  the transition becomes 
first-order for n > 4. Mean field theory predicts a first-order transition for all n > 2 
(Straley and Fisher 1973). 
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The Hamiltonian (2) can also be written in the form 

with j= J / n  and &i = d n .  In the limit n + 0, this Hamiltonian corresponds to the 
self-avoiding walk problem. This was recently shown by Hilhorst (1976), who also 
applied to (8) a special form of the Niemeijer and van Leeuwen (1974) renormalization 
group transformation on a triangular lattice. 

We now turn to study some special cases of our combined Hamiltonian (7). For 
n = 1, it trivially reduces to the Ising model. For n = 2 we can write 

aaiaj = (1 + riT,Oiaj)/2, 

with r, = *l .  Thus, (7) becomes 
(9) 

Ye = - 4J 1 (gigj + T ~ T ~ )  - 1K 1 ciujTirj - 1KN. (10) 
(ii) ( i j )  

This is exactly of the form of the Ashkin and Teller (1943) model; for K = 0 we have 
two decoupled Ising models, with exchange &T, while non-zero values of K introduce 
coupling of the energy-energy type between them (see also Kadanoff and Wegner 
1971). At  d = 2 ,  this model should yield exponents which vary continuously with K. A 
renormalization group study of the n = 2 case was recently done by Knops (1975). 

Another special case is found if K = J. Using 2 S , ,  = 1 + rigj, equation (7) becomes 

which corresponds to the 2n-state Potts model, with coupling constant 25. 

thus the problem reduces to an king model along one of the axes. 
Finally, we note that when K + CO, all sites prefer to have the same value of ai, and 

3. Solution in one dimension 

To solve the problem exactly in one dimension, it is convenient to find the eigenvalues 
of the 2n X 2n transfer matrix, 

-1~2+((+2,  = A + ( g i ,  ai), 1 f eP(Ju,u~+K)S 

q = t l  a*=l 

where p = l /kBT. This equation has three eigenvalues, 

hl  = 2(B + n )  

A 2 = 2 B  ((n - 1)-fold degenerate), 

h3 = 2A 

(non-degenerate), 

(n -fold degenerate), 
where 

A = eSK sinh PJ, B = epK cosh P J -  1. 

Thus, the partition function for a chain of N particles is (Domb 1960): 

z = A:+ (n - i )~ ;+  nh;. (15) 
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For n > 0, one has A I  > A 2  at all T>O. For n > 1 one also has A l  >A3 .  Thus, the free 
energy per spin in the thermodynamic limit ( N +  00) becomes 

F=-kBTlnXl= -kBTln[2(ePK coshBJ+n-i)], (16) 
for n > 1, T > 0. As T+ b, all eigenvalues become degenerate, provided K + IJI > 0. In 
this case, A l  -- A 2  = IA31 = exp[/?(K + 1J1)]+ 00. Thus, we can have a zero-temperature 
critical point with J = 0 (n-state Potts model), K = 0 (‘new cubic’), J =  K (2n-state Potts 
model), etc. 

To find the spin-spin correlation function, it is convenient to write the transfer 
operator in the form 

(17) e P ( J v z + m , , *  = - - :{(A i /n)  + A2[&,a2-  (l/n)I + A 3 ~ 1 ( + 2 & 1 a z I .  

(si. s,) = ( ~ i i a i s , , )  = ( ~ 3 / ~ 1 ) ’ - ~ ’ ,  

The operators 1/2n, [Sa,,,  - (l/n)]/2 and r71~2Sala2/2 are orthonormal under the trace 
operation, and thus one easily finds that in the thermodynamic limit 

(18) 

5 = l/ln(A1/A3). (19) 

and the correlation length 5 may be defined as 

A second correlation length may be defined to describe the Potts-like, or quadrupolar, 
correlation function (Saga, -(l/n)). This will be related to (Al /A2) .  At T=O, both 
correlation lengths diverge to infinity. 

It is interesting to note, that for 0 < n < 1 one may have A l  = A3,  or 5 + CD, at the finite 
temperature 

kBT, = ( J -  K)/(h( 1 - n)l, (20) 
provided K < J. A similar result was found for isotropic Heisenberg-like systems with 
n < 1 (Balian and Toulouse 1974). We shall not discuss this peculiar case any longer 
here. 

For small T, a small variable is (assuming J > 0) 

1/5=2 e-2@’+2(n - 1) e-P(’+K). (21) 
Substituting in (16) we can thus identify the critical exponents, expressed in terms of the 
temperature variable l/(. These turn out to be the same as for the Ising model (see e.g. 
Nelson and Fisher 1975), i.e. CY = Y = 77 = 1. 

Equation (17) is also very useful for constructing the dedecoration renormalization 
group recursion relations for this problem. Eliminating (b  - 1) out of every b spins, 
these recursion relations are simply 

A ~ + A ; = A ~ ,  i = 1,2,3.  (22). 
The fixed point values are h f  = 0, 1 ,  and the eigenvalues (a In A ; / a  In hi)* = b 1  
immediately yield the critical exponents mentioned above. 

4. Expansion in E = (d - 1) 
The recursion relations (22) are easily generalized to d = 1 + E  dimensions, following 
the work of Migdal (1975). Equation (22) now becomes 

(23) hi((/3J)’b1-d, (PK) ’b l -d )  = Ai(/3J, /3K)b. 
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Dividing the equations with i = 2 ,3  by that with i = 1, we thus have two equations for 
the fixed point values (pa* and (PK)*. Assuming both (PJ)* and (PK)* are large, these 
two equations immediately give 

Remembering equation (1 l), we note that this is exactly the 2n-state Potts model fixed 
point. Indeed, the result (24) agrees with that of Stephen (1976) for this case. 

If (PJ)* = 0 we find the n-state Potts model fixed point, with (PK)* = l / ~ .  If @K)* is 
small (of order unity compared to 1 / ~ )  then we find a ‘new cubic’ fixed point, with 

Linearizing the recursion relation about these fixed points we now find that the 
(PJ)* = 1 /E .  

leading exponent is always E, and thus 

v = 1 / E .  (25) 
The 2n-state Potts model fixed point (24) has another eigenvalue equal to E, and is thus 
unstable to perturbations in the J-K plane. The other two fixed points are stable, 
except for the temperature instability. 

We thus conclude that the cubic model has a second-order phase transition for 
d > 1, with exponents which are the same (to leading order in E) as those of the Ising 
model (Migdal 1975) or the Potts model (Stephen 1976). 

5. Approximate recursion relations at d = 2 

Since the cubic model is now expressed in terms of discrete spins, we can treat it using 
any one of the many existing approximate renormalization group schemes at d = 2. All 
are approximate, and not much is yet known about their convergence properties. This 
being the case, we shall not aim in the following discussion at an accurate numerical 
solution of the problem, but rather at a qualitative understanding of the fixed point 
structure and of the possible crossover phenomena involved. For this, we use a very 
simple dedecoration renormalization group, recently proposed by Barber (1975). 
Although it fails to give an accurate exponent 77, we feel that some of the qualitative 
results obtained are quite general. 

We thus consider a square lattice, and perform the trace in the partition function 
over the spins on one half of the sites, sitting on one square sub-lattice. In practice, we 
use a cluster approximation, in which only four spins are kept (S1 in figure 2 of Barber’s 
paper). The trace over two of the spins is easily performed, and we end up with the 
recursion relations 

A ’ =  2A2(n + 2 B  + B 2 ) / ( n  +2B)’, 

B’ = [ A ~  + ~ 4  + 2 ~ ~ ( n  + 2 ~ ) 1 / ( n  + 2 ~ ) ~ ,  

where A and B were defined in equation (14). 
One can now solve equations (26) for all the possible fixed points. These, and the 

appropriate flow lines, are shown (for n = 3) in figure 1. The structure is quite similar to 
that found by Knops (1975), for n = 2, using the Niemeijer and van Leeuwen (1974) 
technique, or to the results in 1 + E  dimensions. There are three fixed points at finite 
values of PJ and PK: 
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* I )  I sing 

Figure 1. Fixed points and flow lines for n = 3 ( n  < nx), P(n) is the n-state Potts model fixed 
point and C is the ‘new cubic’ fixed point. 

P(n). (pJ)*  = 0, (pK)* = pK,(n). This fixed point describes the critical behaviour 
of the n-state Potts model (equation (6) ) .  

P(2n). (pJ)* = (pK)* = &?Kp(2n). This corresponds to the 2n-state Potts model 
(equation (1 1)). 

C. (pa* and (pK)* are both finite for n # 2 ((PK)” = 0 for n = 2, corresponding 
to two decoupled Ising models, equation (10)). This is the ‘new cubic’ fixed 
point. 

In addition to these, we note that for PK = CO, the recursion relations in pJ reduce to 
Barber’s recursion relations for the king model, yielding (pJ)* = 0, 0.61 or CO. The 
other fixed points ((pK)* = (pa* = 0, or T = 00, and (pa* = a, or T = 0) have trivial 
interpretations. 

The flow lines in figure 1 already indicate the stability of the fixed points. The 
n-state Potts model fixed point P(n) has one relevant variable (we consider only even 
spin operators, i.e. zero magnetic fields), which we relate to the temperature. This fixed 
point will therefore describe the physics of the phase transition if J is not too large. In 
fact, for K > J we shall have either this behaviour or the Ising behaviour characterized 
by the appropriate fixed point at (pK)* = CO, (pJ)*  = (pJ)f(-0.61). 

The picture given in figure 1 for n = 3 is found to apply for a range of values of n, i.e. 
0 s n < n,. Within our crude approximation, n, = 8. In this range the 2n-state Potts 
model fixed point P(2n) is found to be doubly unstable, and in fact is a branch point on 
the critical surface (Knops 1975); two critical lines (towards P(n) and towards ‘Ising’) 
leave it for K > J .  The ‘new cubic’ fixed point has only one (temperature) instability, 
and therefore describes the physics of the phase transition for the range J > K. This 
fixed point, in the limit n + O ,  will also describe the critical behaviour of the self- 
avoiding walk problem (Hilhorst 1976); in this case, we find (pJ): = n/2 and (PK): = 
-n2/16, so that (pJ)* /n  has a finite limit (see equation (8)). Note that (PK): = 0 for 
n = 2, and (PK): < 0 for n < 2. 

As n increases towards n,, the fixed point C moves towards the fixed point P(2n), 
with which it coincides at n = n,. For n > n,, the two fixed points interchange in their 
roles; the ‘new cubic’ fixed point C now becomes doubly unstable, and plays the role of 
the branch point, while the 2n-state Potts model fixed point P(2n) describes the physics 
of the transition for relatively small values of K. This situation is quite similar in nature 
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to that of the cubic problem in the context of continuous spins near d = 4, as mentioned 
in the introduction. The value of n, will determine if the three-components cubic 
model, with small values of K,  will be characterized by a ‘2n-Potts’ or by a ‘new cubic’ 
critical behaviour. 

In table 1 we list a few numerical results for the fixed points and the correlation 
length exponent v resulting from the largest eigenvalue of the linearized recursion 
relations (26) near each fixed point. We emphasize again the crude approximation in 
our recursion relations. For example, the exact value of exp(/3Kp(n)) is 1 + n ’’’ (e.g. 
Mittag and Stephen 1971), and the values in table 1 clearly overestimate PK,(n). 

Table 1. Fixed point parameters and critical exponent v for the n-state Potts fixed point 
P(n) and for the ‘new cubic’ fixed point C. 

P(n) C 
n 

(PK)* V @J)* WO* V 

o 6 n  
1 0.96 
2 king 
3 1.39 
4 1.51 
6 1.70 
7 1.77 
8 1.84 
03 -$Inn 

03 

0.82 

0.60 
0.56 
0.51 
0.49 
0.48 
0.25 

~ ~~~~ ~ ~ 

4 2  -nZ/16 - 2 1 

king 
two decoupled Ising 

1.24 0.33 0.54 
1.20 0.57 0.50 
1.30 0.73 0.45 
1.12 1.00 0.44 
1.10 1.10 0.43 
f In3  -$ In n 0.24 

Similarly, we find too small a value for v, or too large a value of a, compared to the series 
values (e.g. Kim and Joseph 1975 and references therein). The errors are similar to 
those encountered by Barber (1975) for the Ising case. One should therefore not take 
the actual numbers too seriously. However, it is reasonable to expect that some general 
tendencies will be maintained in better approximations. We wish to point out one such 
tendency, namely to the n-dependence of the exponent v. For the n-state Potts model 
fixed point, P(n), the exponent v decreases monotonically from v = 43 in the limit n + 0 
to v = t in the limit n -f 00. Clearly, values of v smaller than l / d  are not reasonable, as 
they imply values of the specific heat exponent a which are larger than 1 (using the 
scaling relation dv = 2 -a). These, in turn, imply a divergence of the energy as T + T,. 
Something special should therefore happen when v = l/d, or when the largest eigen- 
value becomes equal to bd (in our case b = J 2 ,  d = 2). In a recent paper, Nienhuis and 
Nauenberg (1975) argue that a magnetic field eigenvalue bd should be interpreted as 
representing a discontinuity in the magnetization, i.e. a first-order transition. One is 
therefore tempted to interpret a temperature eigenvalue bd as representing a dis- 
continuity in the internal energy, i.e. a latent heat, or in the quadrupolar order 
parameter (S?). Within our approximation, v of P(n) equals $ for n between 6 and 7, 
and becomes ‘unphysical’ (less than $) for higher values of n. Could this correspond to 
the first-order transition expected for the Potts model for n > 4 (Baxter 1973)? We 
prefer to leave this as a question, until further work with better recursion relations is 
done. 

An alternative explanation for the small values of v found for large n is based on 
high-temperature series information. At d = 3, Kim and Joseph (1975) find that for all 
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n > 2, the transition is first-order (see however Straley 1974, Enting 1974). However, 
the magnetic susceptibility seems to diverge at T, even though the transition is not 
continuous, with an exponent y which is smaller than unity. Since in the recursion 
relation which we use the exponent 77 is exactly zero (Barber 1975), this implies that the 
exponent v must be smaller than 4 (using y = (2 - 7)~). It is thus possible that improved 
relations will give y < 1, but v 3 1. It is also possible that the singularities implied by the 
existence of a fixed point with large n are related to those found in the series by Kim and 
Joseph (1975). 

A similar decrease of v for large n occurs for the ‘new cubic’ fixed point. The 
interpretation here must probably be searched along similar directions as for the Potts 
case. In fact, v becomes smaller than already at n > 4. Not much is known about the 
behaviour of the cubic model at d = 2. However, the series results at d = 3 do indicate a 
first-order transition for large n (Kim and Levy 1975). Mean field theory predicts a 
first-order transition for n > 3. 

6. Discussion and summary 

Although we treated the model exactly only near one dimension, and very approxi- 
mately at two dimensions, there are some features which appear in all these dimensions 
and which should probably be considered as quite general. It is probably true that there 
will always be competition between four types of critical behaviour, i.e. that of the Ising 
model ( K  + a), that of the n-state Potts model (J+ 0), that of the 2n-state Potts model 
(K  zJ) and that of the ‘new cubic’ fixed points. At d = 1 + E ,  all are stable at T, except 
that of the 2n-state Potts model, which is also a branch point. The same happens at 
d = 2, for n < n,, and it is probably safe to conjecture that it will remain true for d > 2, 
with n, depending on d (n, is infinite at d = 1 + E ,  and of order 10 for d = 2). For n >n,, 
the ‘new cubic’ fixed point becomes the branch point, which is unstable at T,. For large 
n we find at d = 2 a peculiar decrease in the exponent v, both for the ‘new cubic’ and for 
the n-state Potts fixed points. This may be associated with the transition becoming 
first order. 

Once we have demonstrated the relation of the cubic model to the n-state or the 
2n-state Potts model, we can use independent information available for these models to 
interpret some of its critical properties. It would be very interesting to compare 
high-temperature series, with large values of n, for all these models. It seems that the 
first-order nature of the transition in the cubic model is closely related to that of the 
Potts model. 

It is interesting to note that some systems which may be described by the cubic 
model do exhibit relatively high values of the exponent (Y (Kim eta1 1975). This might 
be simply due to the fast increase in a (decrease in v )  as a function of n for the ‘new 
cubic’ fixed point, and not due to any tricritical behaviour. 

Our main purpose here was to touch upon general features of the model, to exhibit 
the rich structure it has under the renormalization group and to raise a few conjectures 
concerning some explanations for these features. It would be highly desirable now to 
use more elaborate and systematic discrete spin renormalization group transformations 
for checking these conjectures. In particular, the relevance of the 2n-state Potts model 
for cubic systems with n > n, and the appearance of the first-order transition via a 
temperature eigenvalue equal to bd should be checked in detail. These checks are left 
for the future. 
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